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Abstract

A common issue when asking questions is that
they might be prone to misinterpretation: most
of us have experienced when a colleague or
teacher misinterprets a question and provides
an answer which is tangential to the informa-
tion we desire, or incomplete. This problem is
exacerbated over text, where visual and emo-
tion cues are not transmittable. We hypothe-
size that question answering models face the
same issues as the human responder in such
situations: when asked an ambiguous question,
they might be unsure what to retrieve from
the given passage. We propose paraphrasing
the question with pre-trained language mod-
els, to improve answer retrieval and robust-
ness to ambiguous questions. We introduce
a new scoring metric, GROK, to evaluate and
select good paraphrases. We show that this
metric improved upon paraphrase selection via
beam search for downstream tasks, and that
this metric combined with data augmentation
via backtranslation increases question answer-
ing performance on the NewsQA and BioASQ
datasets, improving EM by 2.5% and F1 by
1.9% over-and-above the baseline on the latter.

1 Introduction

Data augmentation has long been a popular method
in computer vision (CV) to enhance datasets and
improve generalization. In CV, there are many
possible adjustments that can be made to input
data without fundamentally changing the identity
of the data. Natural language, unfortunately, does
not share this property. In natural language, even
small changes in a phrase can completely change
the semantics. This makes sophisticated, robust
data augmentation a challenge. Though challeng-
ing, the same benefits that have driven augmenta-
tion research in CV remain powerful motivators for
creating robust augmentation systems for Natural
Language Processing (NLP).

With these benefits in mind, we have explored
methods for data augmentation for the question an-
swering NLP task. Here, data augmentation can
be applied most naturally to the questions being
asked. Just as humans often request that a question
be repeated or rephrased so that they can under-
stand and respond appropriately, so too can neu-
ral models benefit from such ”clarifications”, or
paraphrases, of the question. To generate these
paraphrases in a semantic consistency manner, we
leverage other NLP models, pre-trained on large
datasets to generate paraphrases of the questions in
the NewsQA (Trischler et al., 2016) and BioASQ
datasets (Tsatsaronis et al., 2015). We use mod-
els trained for both abstractive summarization and
machine translation to act as our paraphrasing en-
gines. All of these paraphrasing engines have been
trained on other datasets, so their application to the
NewsQA and BioASQ data is cross-domain. The
summarization model was set to output strings of
similar length to the input, thus becoming a para-
phraser rather than a true summarizer. Two paired
machine translation models, one from the input
language to a target language, and one from that
target language back to the input language, were
used to ”backtranslate”, and thus paraphrase, an in-
put sequence. Both paraphrasing techniques were
implemented prior to training - there is no ”on the
fly” augmentation.

In addition to augmentation, we also experi-
mented with data substitution. For substitution,
instead of creating a larger dataset with both the
original and paraphrased training sample, we re-
placed the original training samples with their para-
phrases. This tests the potential improvements due
to different, often better, question phrasing.

Our observations are that data augmentation
(concatenation with existing dataset) improved per-
formance on BioASQ and NewsQA significantly,
and that, surprisingly, even substitution occasion-



ally improved performance when paraphrases were
selected via our new GROK metric.

2 Overview of Previous Work

Multiple methods of data augmentation have been
explored for text data, ranging from simple syn-
onym substitution to substitution with generative
models. These methods have generally been suc-
cessful.

Some simple text augmentation techniques have
produced strong results. Zhang et al. 2015 intro-
duced thesaurus based synonym replacement. Sim-
ilarly, Wang and Yang 2015, Kobayashi 2018a, and
others experimented with word replacement based
on similarity in various embedding spaces using
metrics like nearest neighbor or cosine similarity.

As pretrained generative models become per-
vasive in NLP, they were also applied to the text
augmentation problem (Kobayashi, 2018b). These
models use their ”knowledge” of the language to
generate realistic and semantically/syntactically
sound insertions for masked words. The final evolu-
tion of this concept is to generate entire sequences
that mimic the input sequence, as in Kafle et al.
2017. We follow this pathway to generate addi-
tional whole paraphrases, and then we add our own
scoring methods to ensure robustness of additional
data.

3 Data Augmentation Techniques

Each sample is comprised of a passage, answer
start and end tokens, and a question. Following
our hypothesis that rephrasing the question is anal-
ogous to clarifying in human conversation, we will
be evaluating models trained on datasets with para-
phrased questions.

We will be tested question paraphrases using a
variety of techniques. First, we divide our para-
phrases by method: Abstract Summarization or
Machine Translation. In addition, we will be eval-
uating whether a custom scoring metric, GROK
(Section 3.3), which evaluates the quality of para-
phrases, actually helps performance. Finally, we
can test whether the beam size during paraphrasing
can affect the quality of paraphrases, and thus the
resulting performance of the models.

3.1 Abstractive Summarization

Abstractive summarization is the task of generating
concise, semantically consistent paraphrases from
a large input context. The goal is to shorten an

input, but maintain the meaning. We chose pre-
trained neural abstractive summarization models
over other summarization models because they are
least likely to directly copy the input sequence, and
thus produce a more novel summarization. This is
critical to our paraphrasing task, where novelty is
important to actually augment the dataset. To turn
a summarizer into a paraphraser, we ensured that
the output sequence length was within a certain
threshold of the input sequence.

Popular state of the art summarizers are BART
(Lewis et al., 2019) and PEGASUS (Zhang et al.,
2019). BART trains a transformer-based encoder
using masked language modelling similar to BERT,
but then uses a de-noising autoencoder to perform
the unmasking. We can call this BERT extended to
language generation tasks. PEGASUS, on the other
hand, is trained on a dual objective: the PEGASUS
encoder works similar to a masked-language-model
as in BART and BERT, but the PEGASUS decoder
uses a new Gap Sentence Generation objective,
where it must predict entire intermediate sentences
which have been masked out. This means that it
must learn from very little context and receives
training feedback from an entire predicted gap sen-
tence, unlike BERT and BART which only learns
from the loss of masked tokens.

Since it is currently the state of the art for abstrac-
tive summarization, we choose PEGASUS, and use
the implementation from Huggingface (Wolf et al.,
2020). We applied the pretrained model directly
from the work of Zhang et al. 2019 (Large), as
well as variants that have been finetuned on the Ex-
treme Summarization (XSUM) dataset (Narayan
et al., 2018), CNN-Daily Mail dataset (CNN/DM)
(See et al. 2017 and Hermann et al. 2015), and
Multi-News (MN) dataset (Fabbri et al., 2019).
PEGASUS-CNN/DM is finetuned on a similar data
source as NewsQA, although for the summariza-
tion task instead of question-answering task. We
thus expect this to be closest to the performance of
an “in-domain” model.

3.2 Neural Machine Backtranslation

Backtranslation is a form of paraphrasing that takes
a phrase in one language, translates it to another,
and then translates it back to the original language.
Backtranslation is commonly used to generate syn-
thetic data for NLP tasks because it has been trained
on a large corpus of data and has similar proper-
ties to language models in that it will frequently



generate syntactically correct phrases. When trans-
lating to and from another language, a phrase often
undergoes synonym replacement and token reor-
ganization, but in a syntactically sound way. We
use sampling to generate more varied questions
than beam search (Edunov et al., 2018).Thus, we
can produce valid questions that have surface level
differences but are fundamentally similar semanti-
cally to the original phrase. This is a less manual
way of augmentation that encompasses many of the
common text augmentation techniques discussed
in 2.

We use paired pretrained models for English
↔ German from Facebook’s winning entry to
the WMT19 News Translation competition, doc-
umented in (Ng et al., 2019) and implemented in
pytorch in Facebook’s fairseq library (Ott et al.,
2019).

3.3 GROK Scoring Function
We propose a novel scoring function, GROK
Restricts Outrageous Keywords as a heuristic to
select the best paraphrases. We define a good para-
phrase to have certain properties: rewording (using
different articles), few phrases copied directly from
the input, few repeating ngrams within the para-
phrase, and fewer unrelated “hallucinations”. The
GROK score incorporates all of these in its compo-
nents:

• Length of longest non-contiguous match
(LNCM, lower = better)

• Number of unique n-grams in the paraphrase
(UN, higher = better)

• Hallucinated unigrams, not including stop-
words and punctuation (HU, lower=better)

• Missing unigrams, not including stopwords
and punctuation (MU, lower = better)

A non-contiguous matching token sequence be-
tween an original question, q0 and it’s paraphrased
version, qp is a sequence of shared tokens that ap-
pear in the same order in both q0 and qp, but are
not necessarily contiguous. For example, if q0 =
“I am the original question!” and qp = “the orig-
inal, true question is me”, then the longest non-
contiguous matching token sequence is “the”, “orig-
inal”, “question”], since those tokens appear in the
same left to right order, even though they are non-
contiguous. The intuition behind this aspect of
GROK is to punish exact or near-exact copies with

only one-word differences, since these are often
not true paraphrases. The closer to an exact copy,
or the more tokens that are exactly copied in order
from q0, higher the LNCM count.

The second component of GROK is the number
of unique n-grams, UN. Most human-generated
sentences and summaries vary with the exact
phrases used, even while keeping semantics the
same, which reflects in a high unique n-gram count.
This also acts as a filter for a common issue with
generative models, which is to repeat short text
phrases continually.

The final two components are complementary:
HU measures the number of new unigrams which
the model generates which are not in the origi-
nal, whereas MU captures the number of unigrams
from the original which the model does not gener-
ate. The former catches “hallucinations”: random
insertions of information which are not in the orig-
inal content. The latter catches omissions: impor-
tant pieces of information which the model missed
while generating. We filter out stopwords while
calculating both, to avoid penalizing the model
when it paraphrases using different prepositions,
articles and punctuation (which is desirable in a
paraphrase!).

Altogether, these components are combined in a
simple function:

GROK(ngram, thresh) =
UN

LNCM + HU + MU

We observe that when using ngram = 1, an
exact copy of the original has a GROK score of
1.0; this captures the fact that although the para-
phrase does not help, it does not hurt either. A
generated sentence which is an exact copy of the
original, but with half the unique tokens missing,
will be assigned a GROK score of 0.5, as will
a sentence with half the unique tokens replaced
by a random selection. One caveat is that GROK
does not penalize sentence-swapping (e.g. a high
GROK score would be given to the paraphrase:
“WE MUST IMPOSE SANCTIONS”, SAID OBAMA

TO US CONGRESS LAST TUESDAY.“IT IS OUR

RIGHT AS A NATION.” −→ “IT IS OUR RIGHT

AS A NATION.” SAID OBAMA ON TUESDAY TO

CONGRESS. “WE MUST IMPOSE SANCTIONS”).

Empirically, we have found that GROK scores
above 1.2 are good paraphrases.



3.4 Beam Sizes

Choosing beam size required balancing model per-
formance and computational efficiency. Ideally,
a large number of beams will imrpove the para-
phrases, but at high memory and computation cost.
We originally chose a beam size of 75 for PEGA-
SUS on BioASQ, but found this to be prohibitively
slow on NewsQA. Thus, we dropped beam size
to 30 for NewsQA. Though this does slightly re-
duce performance, it is a necessary trade off for the
model to run in a reasonable time.

Our reasoning for experimenting with large
beam sizes to begin with is to showcase our GROK
function, and to compare it’s performance over
candidate paraphrases with the top beam score can-
didate. A larger number of beams gives our GROK
function more inputs to select from.

4 Experiments

Since we are evaluating data augmentations, our
model and training methods were held constant
through the experiments. While this likely did not
allow us to maximize performance on each specific
augmented dataset, it does allow us to attribute
performance differences to the dataset itself and
make ”apples to apples” comparisons. Below we
detail the model and training schema.

4.1 Model

We employ a bidirectional LSTM with aligned at-
tention and question encoding based on the reader
from (Chen et al., 2017) as implemented by Greg
Durret, et al. We use 300 dimensional pretrained
GloVe word embeddings. (Pennington et al., 2014).

4.2 Training Method

Each model was trained for approximately 150
gradient updates on GPU. Full hyperparameters
are listed in Table. All training hyperparameters,
except epoch number, remained constant to ensure
fair performance comparisons between augmented
datasets.

In order to ensure a fair comparison between
datasets of different sizes, we implemented an adap-
tive epoch count that equated the number of gra-
dient updates per model. For example, a model
being trained on twice the amount of data in the
base dataset will be trained for half as many epochs
as the base dataset, giving the model the same num-
ber of opportunities to learn (udpate parameters) in
each situation. Even with this adaptive technique,

we still used early stopping to prevent over fitting,
so in some cases gradient updates will not be equal
and the number cited above is an upper bound.

5 Results

We report results for question augmentation and
question substitution on the BioASQ and NewsQA
datasets in Tables 1 and 2. We report the three-
run averaged exact match (EM) and F1 scores on
the question answering task associated with each
dataset. All PEGASUS variants use a beam size
of 75 (for BioASQ) and 30 (for NewsQA) and
temperature of 1.5. All FairSeq variants use a beam
size of 20 and temperature of 1.5.

For abstractive summarization models, the max
length multiplier is the truncation length of para-
phrases, in relation to the original phrase. For ex-
ample, if the original sentence is 20 words long,
a maximum length paraphrase of 1.5 restricts the
max paraphrase to 30 words. All paraphrase can-
didates generated by the model were scored and
the top paraphrase was selected according to beam
search score, our own custom GROK metric. When
using GROK, if the highest-scoring candidate does
not meet the score threshold, we use the original
paraphrase instead. The percentage of paraphrases
that meet this selection criteria is reported as Para-
phrase %. Note that not all paraphrases are unique
from the original question.

5.1 Efficacy of GROK

Using Table 1, we compare model performance
when trained on data selected by beam search
against our GROK metric. In all cases, our GROK
metric outperforms beam search on the downstream
question-answering task, even with as many as 75
beams. This suggests that the paraphrases cho-
sen by beam search are linguistically suboptimal,
and that the intuition behind GROK is sound - it
chooses good paraphrases that lead to more robust
model learning. In the substitution task, we replace
human written questions with machine paraphrases.
In this case, we do not expect that our paraphrases
would improve over human questions. But we see
that in one case, we actually improve performance
on the downstream task when we substitute high
quality paraphrases into the dataset to replace lower
quality human written questions.

We also note that the stricter GROK is in select-
ing paraphrases (lower paraphrase %), the better
model performance is. We suspect that this is be-

https://github.com/gregdurrett/nlp-qa-finalproj
https://github.com/gregdurrett/nlp-qa-finalproj


Paraphrasing Max Length Candidate BioASQ NewsQA

Engine Multiplier Selection Paraphr. % EM F1 Paraphr. % EM F1

Baseline (no paraphrasing) - - 0 67.6 73.3 0 30.5 45.1

PEGASUS CNN/DM

1.5 Beam 92.9 62.2 69.3 15.4 30.5 45.0
1.5 GROK(1, 1.5) 36.1 66.3 72.5 15.4 30.1 44.6
1.5 GROK(1, 1.2) 74.6 63.1 69 85.2 28.7 42.2
1.5 GROK(2, 1.2) 55.7 66.0 71.1 15.4 30.1 44.7
2.0 GROK(1, 1.2) 90.5 63.5 69.9 - - -

PEGASUS Large

1.5 Beam 64.4 62.1 69.2 15.4 30.3 44.9
1.5 GROK(1, 1.5) 4.2 66.4 72.4 7.8 30.2 44.5
1.5 GROK(1, 1.2) 21.7 65.7 72.2 15.4 30.3 44.8
1.5 GROK(2, 1.2) 6.4 68.0 73.7 11.8 30.0 44.4
2.0 GROK(1, 1.2) 57.1 62.3 69.4 - - -

PEGASUS Multinews

1.5 Beam 100 31.3 40.5 15.4 29.8 44.4
1.5 GROK(1, 1.5) 5.2 66.2 72.2 4.9 30.1 44.2
1.5 GROK(1, 1.2) 22.9 66.2 72.2 15.4 30.3 44.8
1.5 GROK(2, 1.2) 10.1 65.5 72.1 9.7 30.3 44.8
2.0 GROK(1, 1.2) 69.3 57.4 65.5 - - -

PEGASUS XSUM

1.5 Beam 97.4 35.7 45.6 15.4 30.1 44.4
1.5 GROK(1, 1.5) 15.5 67.3 72.8 15.4 29.9 44.2
1.5 GROK(1, 1.2) 53.7 60.1 67.7 53.3 28.1 41.5
1.5 GROK(2, 1.2) 42.6 61.9 68.8 15.4 30.2 44.7
2.0 GROK(1, 1.2) 80.4 50.9 61.1 - - -

Fairseq

1.5 Sampling 100 62 69.5 15.4 30.3 44.8
1.5 Sampling + GROK(1, 1.5) 98.7 61.3 68.9 15.4 30.2 44.4
1.5 Sampling + GROK(1, 1.2) 98.0 63.2 69.6 15.4 30.6 44.7
1.5 Sampling + GROK(2, 1.2) 80.8 63.6 70.2 15.5 30.1 44.3

Table 1: Substitution. See Section 5 for details. Performance is average of 3 runs.

cause these human written questions are, in gen-
eral, good, so GROK only induces improvements
when it ”fixes” a few poorly written or ambiguous
questions. In this sense, GROK acts as a way to
de-noise the dataset when used for substitution.

6 Conclusions

In this work, we observe the effect of machine-
generated text for data augmentation in the
question-answer setup, were we perform either a
substitution of the question with a machine gen-
erated one, or add it to the original dataset. We
use SOTA models for Abstractive Summariza-
tion (PEGASUS) and Neural Machine Translation
(FairSeq) as paraphrasers. We observe that choos-
ing the appropriate paraphrase among a list of can-
didates adds complexity to the problem, as naive
approaches such as picking the best beam-search
value do not generate good paraphrases for our
downstream task. We thus propose a new metric,
GROK, which we use for both candidate selection
and post-hoc filtering of ”good” paraphrases. When
using GROK for substitution, we see that we are
even able to improve upon the baseline. We offer
two hypothesis for these performance increases:
first, the paraphraser ”smooths” the questions from

a somewhat noisy, potentially ungrammatical state
(as a result of crowdsourced or truncated input)
and rephrases the questions in a more linguisti-
cally sound form. The second, and perhaps more
intriguing explanation is that the paraphrasers gen-
erate questions that are more easily understood,
natively, for the underlying QA model. In this
sense, the paraphrasers act almost as translators
between ”human English” and ”machine English”.
This is vaguely analogous to how humans may
speak their non-native language. They may use
the proper vocabulary, and often form syntactically
sound phrases, but they do so in forms that a native
speaker would recognize as unusual because they
do not follow local connotations. Finally, we ob-
serve that using our GROK score to score and filter
paraphrases when used in augmentation gives an
overall performance improvement of 2.5% EM and
1.9% F1 on the BioASQ task. We believe this is
an interesting area of research and further work is
needed.

7 Future Work

Just as a respondent can benefit from the question
being rephrased, so too might the question asker
benefit from the answer being rephrased. Thus, in



Paraphrasing Max Length Candidate BioASQ

Engine Multiplier Selection Paraphr. % EM F1

Baseline (no paraphrasing) - - 0 67.6 73.3

PEGASUS CNN/DM
1.5 Beam 50 69.0 74.3
1.5 GROK(1, 1.2) 39.7 62.5 70.1
1.5 GROK(2, 1.2) 32.8 65.5 71.5

PEGASUS Large
1.5 Beam 50 65.4 72.4
1.5 GROK(1, 1.2) 15.4 65.3 71.8
1.5 GROK(2, 1.2) 2.9 66.2 71.9

PEGASUS Multinews
1.5 Beam 50 66.7 72.4
1.5 GROK(1, 1.2) 15.6 65.2 71.6
1.5 GROK(2, 1.2) 5.3 67.0 71.3

PEGASUS XSUM
1.5 Beam 50 68.8 74.6
1.5 GROK(1, 1.2) 32.6 65.9 72
1.5 GROK(2, 1.2) 26.6 66.5 72.1

Fairseq
1.5 Sampling 50 68.8 74.6
1.5 Sampling + GROK(1, 1.2) 46.5 70.1 75.2

Table 2: Augmentation/Concatenation. See Section 5 for details. Performance is average of 3 runs.

future work, we would like to also paraphrase the
answers, as well as the context of the answer. This
follows the general logic of data augmentation to
show the model various versions of data to increase
robustness and generalizability.

We’d also like to implement test time augmenta-
tion. Just like the model can benefit from a question
being asked a different way (a beneficial rephras-
ing) during learning, so too can the model benefit
from multiple opportunitues to ”hear” a question at
test time. In this proposed scheme, the model will
answer the original question and its paraphrased
form (potentially, multiple paraphrased forms) and
ensemble an answer.

8 Supplementary Materials

Code and datasets produced for this paper are avail-
able in our Github repository (temporarily unlinked
for anonymity’s sake).

Acknowledgments

Thank you to Prof. Greg Durrett for compiling and
teaching this course. The lectures were well paced
and gave valuable insight into NLP fundamentals
and some state of the art approaches.

Another large thank you to the TAs for this
course. They have gone above and beyond to offer
help and insight in all aspects of the course.

References
Danqi Chen, Adam Fisch, Jason Weston, and Antoine

Bordes. 2017. Reading wikipedia to answer open-
domain questions. CoRR, abs/1704.00051.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. CoRR, abs/1808.09381.

Alexander R. Fabbri, Irene Li, Tianwei She, Suyi
Li, and Dragomir R. Radev. 2019. Multi-
news: a large-scale multi-document summarization
dataset and abstractive hierarchical model. CoRR,
abs/1906.01749.

Karl Moritz Hermann, Tomás Kociský, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In NIPS, pages 1693–1701.

Kushal Kafle, Mohammed Yousefhussien, and Christo-
pher Kanan. 2017. Data augmentation for visual
question answering. In Proceedings of the 10th In-
ternational Conference on Natural Language Gen-
eration, pages 198–202, Santiago de Compostela,
Spain. Association for Computational Linguistics.

Sosuke Kobayashi. 2018a. Contextual augmentation:
Data augmentation by words with paradigmatic re-
lations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 452–457,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Sosuke Kobayashi. 2018b. Contextual augmentation:
Data augmentation by words with paradigmatic rela-
tions. CoRR, abs/1805.06201.

http://arxiv.org/abs/1704.00051
http://arxiv.org/abs/1704.00051
http://arxiv.org/abs/1808.09381
http://arxiv.org/abs/1808.09381
http://arxiv.org/abs/1906.01749
http://arxiv.org/abs/1906.01749
http://arxiv.org/abs/1906.01749
http://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend
http://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend
https://doi.org/10.18653/v1/W17-3529
https://doi.org/10.18653/v1/W17-3529
https://doi.org/10.18653/v1/N18-2072
https://doi.org/10.18653/v1/N18-2072
https://doi.org/10.18653/v1/N18-2072
http://arxiv.org/abs/1805.06201
http://arxiv.org/abs/1805.06201
http://arxiv.org/abs/1805.06201


Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2019. BART: denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. CoRR, abs/1910.13461.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
Topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, Brussels, Belgium.

Nathan Ng, Kyra Yee, Alexei Baevski, Myle Ott,
Michael Auli, and Sergey Edunov. 2019. Face-
book fair’s WMT19 news translation task submis-
sion. CoRR, abs/1907.06616.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1532–1543.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Har-
ris, Alessandro Sordoni, Philip Bachman, and Ka-
heer Suleman. 2016. Newsqa: A machine compre-
hension dataset. CoRR, abs/1611.09830.

George Tsatsaronis, Georgios Balikas, Prodromos
Malakasiotis, Ioannis Partalas, Matthias Zschunke,
Michael R Alvers, Dirk Weissenborn, Anastasia
Krithara, Sergios Petridis, Dimitris Polychronopou-
los, Yannis Almirantis, John Pavlopoulos, Nico-
las Baskiotis, Patrick Gallinari, Thierry Artieres,
Axel Ngonga, Norman Heino, Eric Gaussier, Lil-
iana Barrio-Alvers, Michael Schroeder, Ion An-
droutsopoulos, and Georgios Paliouras. 2015. An
overview of the bioasq large-scale biomedical se-
mantic indexing and question answering competi-
tion. BMC Bioinformatics, 16:138.

William Yang Wang and Diyi Yang. 2015. That’s so an-
noying!!!: A lexical and frame-semantic embedding
based data augmentation approach to automatic cat-
egorization of annoying behaviors using #petpeeve
tweets. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
pages 2557–2563, Lisbon, Portugal. Association for
Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
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